regex #
Description
regex
is a small but powerful regular expression library, written in pure V.
Note >
regex
is not PCRE compatible.
[TOC]
Introduction
Here are the assumptions made during the writing of the implementation, that are valid for all the regex
module features:
The matching stops at the end of the string, not at newline characters.
The basic atomic elements of this regex engine are the tokens.In a query string a simple character is a token.
Differences with PCRE:
Note > We must point out that the V-Regex module is not PCRE compliant and thus > some behaviour will be different. This difference is due to the V philosophy, > to have one way and keep it simple.
The main differences can be summarized in the following points:
The basic element is the token not the sequence of symbols, and the mostsimple token, is a single character.
|
the OR operator acts on tokens, for exampleabc|ebc
is notabc
ORebc
. Instead it is evaluated likeab
, followed byc OR e
, followed bybc
, because the token is the base element, not the sequence of symbols.
Note: Two char classes with an OR
in the middle is a syntax error.
- The match operation stops at the end of the string. It does NOT stopat new line characters.
Tokens
The tokens are the atomic units, used by this regex engine. They can be one of the following:
Simple char
This token is a simple single character like a
or b
etc.
Match positional delimiters
^
Matches the start of the string.
$
Matches the end of the string.
Char class (cc)
The character classes match all the chars specified inside. Use square brackets [ ]
to enclose them.
The sequence of the chars in the character class, is evaluated with an OR op.
For example, the cc [abc]
, matches any character, that is a
or b
or c
, but it doesn't match C
or z
.
Inside a cc, it is possible to specify a "range" of characters, for example [ad-h]
is equivalent to writing [adefgh]
.
A cc can have different ranges at the same time, for example [a-zA-Z0-9]
matches all the latin lowercase, uppercase and numeric characters.
It is possible to negate the meaning of a cc, using the caret char at the start of the cc like this: [^abc]
. That matches every char that is NOT a
or b
or c
.
A cc can contain meta-chars like: [a-z\d]
, that match all the lowercase latin chars a-z
and all the digits \d
.
It is possible to mix all the properties of the char class together.
Note > In order to match the
-
(minus) char, it must be preceded by > a backslash in the cc, for example[\-_\d\a]
will match: > --
minus, > -_
underscore, > -\d
numeric chars, > -\a
lower case chars.
Meta-chars
A meta-char is specified by a backslash, before a character. For example \w
is the meta-char w
.
A meta-char can match different types of characters.
\w
matches a word char[a-zA-Z0-9_]
\W
matches a non word char\d
matches a digit[0-9]
\D
matches a non digit\s
matches a space char, one of[' ','\t','\n','\r','\v','\f']
\S
matches a non space char\a
matches only a lowercase char[a-z]
\A
matches only an uppercase char[A-Z]
\x41
match a byte of value 0x41,A
in ascii code\X414C
match two consecutive bytes of value 0x414c,AL
in ascii code
Quantifier
Each token can have a quantifier, that specifies how many times the character must be matched.
Short quantifiers
?
matches 0 or 1 time,a?b
matches bothab
orb
+
matches at least 1 time, for example,a+
matches bothaaa
ora
*
matches 0 or more times, for example,a*b
matchesaaab
,ab
orb
Long quantifiers
{x}
matches exactly x times,a{2}
matchesaa
, but notaaa
ora
{min,}
matches at least min times,a{2,}
matchesaaa
oraa
, nota
{,max}
matches at least 0 times and at maximum max times,for example,a{,2}
matchesa
andaa
, but doesn't matchaaa
-{min,max}
matches from min times, to max times, for examplea{2,3}
matchesaa
andaaa
, but doesn't matcha
oraaaa
A long quantifier, may have a greedy off
flag, that is the ?
character after the brackets. {2,4}?
means to match the minimum number of possible tokens, in this case 2.
Dot char
The dot is a particular meta-char, that matches "any char".
It is simpler to explain it with an example:
Suppose you have abccc ddeef
as a source string, that you want to parse with a regex. The following table shows the query strings and the result of parsing source string.
query string | result |
---|---|
.*c | abc |
.*dd | abcc dd |
ab.*e | abccc dde |
ab.{3} .*e | abccc dde |
The dot matches any character, until the next token match is satisfied.
Important Note: Consecutive dots, for example
...
, are not allowed. > This will cause a syntax error. Use a quantifier instead.
OR token
The token |
, means a logic OR operation between two consecutive tokens, i.e. a|b
matches a character that is a
or b
.
The OR token can work in a "chained way": a|(b)|cd
means test first a
, if the char is not a
, then test the group (b)
, and if the group doesn't match too, finally test the token c
.
Note > Unlike in PCRE, the OR operation works at token level! > It doesn't work at concatenation level!
Note > Two char classes with an
OR
in the middle is a syntax error.
That also means, that a query string like abc|bde
is not equal to (abc)|(bde)
, but instead to ab(c|b)de
. The OR operation works only for c|b
, not at char concatenation level.
Groups
Groups are a method to create complex patterns with repetitions of blocks of tokens. The groups are delimited by round brackets ( )
. Groups can be nested. Like all other tokens, groups can have a quantifier too.
c(pa)+z
match cpapaz
or cpaz
or cpapapaz
.
(c(pa)+z ?)+
matches cpaz cpapaz cpapapaz
or cpapaz
Lets analyze this last case, first we have the group #0
, that is the most outer round brackets (...)+
. This group has a quantifier +
, that says to match its content at least one time.
Then we have a simple char token c
, and a second group #1
: (pa)+
. This group also tries to match the sequence pa
, at least one time, as specified by the +
quantifier.
Then, we have another simple token z
and another simple token ?
, i.e. the space char (ascii code 32) followed by the ?
quantifier, which means that the preceding space should be matched 0 or 1 time.
This explains why the (c(pa)+z ?)+
query string, can match cpaz cpapaz cpapapaz
.
In this implementation the groups are "capture groups". This means that the last temporal result for each group, can be retrieved from the RE
struct.
The "capture groups" are stored as indexes in the field groups
, that is an []int
inside the RE
struct.
example:
text := 'cpaz cpapaz cpapapaz'
query := r'(c(pa)+z ?)+'
mut re := regex.regex_opt(query) or { panic(err) }
println(re.get_query())
// #0(c#1(pa)+z ?)+
// #0 and #1 are the ids of the groups, are shown if re.debug is 1 or 2
start, end := re.match_string(text)
// [start=0, end=20] match => [cpaz cpapaz cpapapaz]
mut gi := 0
for gi < re.groups.len {
if re.groups[gi] >= 0 {
println('${gi / 2} :[${text[re.groups[gi]..re.groups[gi + 1]]}]')
}
gi += 2
}
// groups captured
// 0 :[cpapapaz]
// 1 :[pa]
Note > To show the
group id number
in the result of theget_query()
> the flagdebug
of the RE object must be1
or2
In order to simplify the use of the captured groups, it is possible to use the utility function: get_group_list
.
This function returns a list of groups using this support struct:
pub struct Re_group {
pub:
start int = -1
end int = -1
}
Here is an example of use:
//
This simple function converts an HTML RGB value with 3 or 6 hex digits to
an u32 value, this function is not optimized and it is only for didatical
purpose. Example: #A0B0CC #A9F
fn convert_html_rgb(in_col string) u32 {
mut n_digit := if in_col.len == 4 { 1 } else { 2 }
mut col_mul := if in_col.len == 4 { 4 } else { 0 }
// this is the regex query, it uses the V string interpolation to customize the regex query
// Note: If you want to use escaped code you must use the r"" (raw) strings,
// *** please remember that the V interpoaltion doesn't work on raw strings. ***
query :='#([a-fA-F0-9]{${n_digit}})([a-fA-F0-9]{${n_digit}})([a-fA-F0-9]{${n_digit}})'
mut re := regex.regex_opt(query) or { panic(err) }
start, end := re.match_string(in_col)
println('start: ${start}, end: ${end}')
mut res := u32(0)
if start >= 0 {
group_list := re.get_group_list() // this is the utility function
r := ('0x' + in_col[group_list[0].start..group_list[0].end]).int() << col_mul
g := ('0x' + in_col[group_list[1].start..group_list[1].end]).int() << col_mul
b := ('0x' + in_col[group_list[2].start..group_list[2].end]).int() << col_mul
println('r: ${r} g: ${g} b: ${b}')
res = u32(r) << 16 | u32(g) << 8 | u32(b)
}
return res
}
Other utility functions are get_group_by_id
and get_group_bounds_by_id
that get directly the string of a group using its id
:
txt := 'my used string....'
for g_index := 0; g_index < re.group_count; g_index++ {
println('#${g_index} [${re.get_group_by_id(txt, g_index)}] \
}] bounds: ${re.get_group_bounds_by_id(g_index)}')
}
More helper functions are listed in the Groups query functions section.
Groups Continuous saving
In particular situations, it is useful to have a continuous group saving. This is possible by initializing the group_csave
field in the RE
struct.
This feature allows you to collect data in a continuous/streaming way.
In the example, we can pass a text, followed by an integer list, that we wish to collect. To achieve this task, we can use the continuous group saving, by enabling the right flag: re.group_csave_flag = true
.
The .group_csave
array will be filled then, following this logic:
re.group_csave[0]
- number of total saved records re.group_csave[1+n*3]
- id of the saved group re.group_csave[2+n*3]
- start index in the source string of the saved group re.group_csave[3+n*3]
- end index in the source string of the saved group
The regex will save groups, until it finishes, or finds that the array has no more space. If the space ends, no error is raised, and further records will not be saved.
import regex
fn main() {
txt := 'http://www.ciao.mondo/hello/pippo12_/pera.html'
query := r'(?P<format>https?)|(?P<format>ftps?)://(?P<token>[\w_]+.)+'
mut re := regex.regex_opt(query) or { panic(err) }
// println(re.get_code()) // uncomment to see the print of the regex execution code
re.debug = 2 // enable maximum log
println('String: ${txt}')
println('Query : ${re.get_query()}')
re.debug = 0 // disable log
re.group_csave_flag = true
start, end := re.match_string(txt)
if start >= 0 {
println('Match (${start}, ${end}) => [${txt[start..end]}]')
} else {
println('No Match')
}
if re.group_csave_flag == true && start >= 0 && re.group_csave.len > 0 {
println('cg: ${re.group_csave}')
mut cs_i := 1
for cs_i < re.group_csave[0] * 3 {
g_id := re.group_csave[cs_i]
st := re.group_csave[cs_i + 1]
en := re.group_csave[cs_i + 2]
println('cg[${g_id}] ${st} ${en}:[${txt[st..en]}]')
cs_i += 3
}
}
}
The output will be:
String: http://www.ciao.mondo/hello/pippo12_/pera.html
Query : #0(?P<format>https?)|{8,14}#0(?P<format>ftps?)://#1(?P<token>[\w_]+.)+
Match (0, 46) => [http://www.ciao.mondo/hello/pippo12_/pera.html]
cg: [8, 0, 0, 4, 1, 7, 11, 1, 11, 16, 1, 16, 22, 1, 22, 28, 1, 28, 37, 1, 37, 42, 1, 42, 46]
cg[0] 0 4:[http]
cg[1] 7 11:[www.]
cg[1] 11 16:[ciao.]
cg[1] 16 22:[mondo/]
cg[1] 22 28:[hello/]
cg[1] 28 37:[pippo12_/]
cg[1] 37 42:[pera.]
cg[1] 42 46:[html]
Named capturing groups
This regex module supports partially the question mark ?
PCRE syntax for groups.
(?:abcd)
non capturing group: the content of the group will not be saved.
(?P<mygroup>abcdef)
named group: the group content is saved and labeled as mygroup
.
The label of the groups is saved in the group_map
of the RE
struct, that is a map from string
to int
, where the value is the index in group_csave
list of indexes.
Here is an example for how to use them:
import regex
fn main() {
txt := 'http://www.ciao.mondo/hello/pippo12_/pera.html'
query := r'(?P<format>https?)|(?P<format>ftps?)://(?P<token>[\w_]+.)+'
mut re := regex.regex_opt(query) or { panic(err) }
// println(re.get_code()) // uncomment to see the print of the regex execution code
re.debug = 2 // enable maximum log
println('String: ${txt}')
println('Query : ${re.get_query()}')
re.debug = 0 // disable log
start, end := re.match_string(txt)
if start >= 0 {
println('Match (${start}, ${end}) => [${txt[start..end]}]')
} else {
println('No Match')
}
for name in re.group_map.keys() {
println('group:'${name}' \t=> [${re.get_group_by_name(txt, name)}] \
}] bounds: ${re.get_group_bounds_by_name(name)}')
}
}
Output:
String: http://www.ciao.mondo/hello/pippo12_/pera.html
Query : #0(?P<format>https?)|{8,14}#0(?P<format>ftps?)://#1(?P<token>[\w_]+.)+
Match (0, 46) => [http://www.ciao.mondo/hello/pippo12_/pera.html]
group:'format' => [http] bounds: (0, 4)
group:'token' => [html] bounds: (42, 46)
In order to simplify the use of the named groups, it is possible to use a name map in the re
struct, using the function re.get_group_by_name
.
Here is a more complex example of using them:
// This function demonstrate the use of the named groups
fn convert_html_rgb_n(in_col string) u32 {
mut n_digit := if in_col.len == 4 { 1 } else { 2 }
mut col_mul := if in_col.len == 4 { 4 } else { 0 }
query :='#(?P[a-fA-F0-9]{ ${n_digit}})' +'(?P[a-fA-F0-9]{ ${n_digit}})' +
'(?P[a-fA-F0-9]{ ${n_digit}})'
mut re := regex.regex_opt(query) or { panic(err) }
start, end := re.match_string(in_col)
println('start: ${start}, end: ${end}')
mut res := u32(0)
if start >= 0 {
red_s, red_e := re.get_group_by_name('red')
r := ('0x' + in_col[red_s..red_e]).int() << col_mul
green_s, green_e := re.get_group_by_name('green')
g := ('0x' + in_col[green_s..green_e]).int() << col_mul
blue_s, blue_e := re.get_group_by_name('blue')
b := ('0x' + in_col[blue_s..blue_e]).int() << col_mul
println('r: ${r} g: ${g} b: ${b}')
res = u32(r) << 16 | u32(g) << 8 | u32(b)
}
return res
}
Other utilities are get_group_by_name
and get_group_bounds_by_name
, that return the string of a group using its name
:
txt := 'my used string....'
for name in re.group_map.keys() {
println('group:'${name}' \t=> [${re.get_group_by_name(txt, name)}] \
}] bounds: ${re.get_group_bounds_by_name(name)}')
}
Groups query functions
These functions are helpers to query the captured groups
// get_group_bounds_by_name get a group boundaries by its name
pub fn (re RE) get_group_bounds_by_name(group_name string) (int, int)
// get_group_by_name get a group string by its name
pub fn (re RE) get_group_by_name(group_name string) string
// get_group_by_id get a group boundaries by its id
pub fn (re RE) get_group_bounds_by_id(group_id int) (int,int)
// get_group_by_id get a group string by its id
pub fn (re RE) get_group_by_id(in_txt string, group_id int) string
struct Re_group {
pub:
start int = -1
end int = -1
}
// get_group_list return a list of Re_group for the found groups
pub fn (re RE) get_group_list() []Re_group
Flags
It is possible to set some flags in the regex parser, that change the behavior of the parser itself.
// example of flag settings
mut re := regex.new()
re.flag = regex.f_bin
f_bin
: parse a string as bytes, utf-8 management disabled.f_efm
: exit on the first char matches in the query, used by thefind function.f_ms
: matches only if the index of the start match is 0,same as^
at the start of the query string.f_me
: matches only if the end index of the match is the last charof the input string, same as$
end of query string.f_nl
: stop the matching if found a new line char\n
or\r
Functions
Initializer
These functions are helpers that create the RE
struct. A RE
struct can be created manually if needed.
Simplified initializer
// regex create a regex object from the query string and compile it
pub fn regex_opt(in_query string) ?RE
Base initializer
// new create a RE of small size, usually sufficient for ordinary use
pub fn new() RE
Compiling
After an initializer is used, the regex expression must be compiled with:
// compile_opt compile RE pattern string, returning an error if the compilation fails
pub fn (mut re RE) compile_opt(pattern string) !
Matching Functions
These are the matching functions
// match_string try to match the input string, return start and end index if found else start is -1
pub fn (mut re RE) match_string(in_txt string) (int, int)
Find and Replace
There are the following find and replace functions:
Find functions
// find try to find the first match in the input string
// return start and end index if found else start is -1
pub fn (mut re RE) find(in_txt string) (int, int)
// find_all find all the "non overlapping" occurrences of the matching pattern
// return a list of start end indexes like: [3,4,6,8]
// the matches are [3,4] and [6,8]
pub fn (mut re RE) find_all(in_txt string) []int
// find_all_str find all the "non overlapping" occurrences of the match pattern
// return a list of strings
// the result is like ['first match','secon match']
pub fn (mut re RE) find_all_str(in_txt string) []string
Replace functions
// replace return a string where the matches are replaced with the repl_str string,
// this function supports groups in the replace string
pub fn (mut re RE) replace(in_txt string, repl string) string
replace string can include groups references:
txt := 'Today it is a good day.'
query := r'(a\w)[ ,.]'
mut re := regex.regex_opt(query)?
res := re.replace(txt, r'__[\0]__')
in this example we used the group 0
in the replace string: \0
, the result will be:
Today it is a good day. => Tod__[ay]__it is a good d__[ay]__
Note > In the replace strings can be used only groups from
0
to9
.
If the usage of groups
in the replace process, is not needed, it is possible to use a quick function:
// replace_simple return a string where the matches are replaced with the replace string
pub fn (mut re RE) replace_simple(in_txt string, repl string) string
If it is needed to replace N instances of the found strings it is possible to use:
// replace_n return a string where the first `count` matches are replaced with the repl_str string
// `count` indicate the number of max replacements that will be done.
// if count is > 0 the replace began from the start of the string toward the end
// if count is < 0 the replace began from the end of the string toward the start
// if count is 0 do nothing
pub fn (mut re RE) replace_n(in_txt string, repl_str string, count int) string
Custom replace function
For complex find and replace operations, you can use replace_by_fn
. The replace_by_fn
, uses a custom replace callback function, thus allowing customizations. The custom callback function is called for every non overlapped find.
The custom callback function must be of the type:
// type of function used for custom replace
// in_txt source text
// start index of the start of the match in in_txt
// end index of the end of the match in in_txt
// --- the match is in in_txt[start..end] ---
fn (re RE, in_txt string, start int, end int) string
The following example will clarify its usage:
import regex
// customized replace functions
// it will be called on each non overlapped find
fn my_repl(re regex.RE, in_txt string, start int, end int) string {
g0 := re.get_group_by_id(in_txt, 0)
g1 := re.get_group_by_id(in_txt, 1)
g2 := re.get_group_by_id(in_txt, 2)
return'*${g0}*${g1}*${g2}*'
}
fn main() {
txt := 'today [John] is gone to his house with (Jack) and [Marie].'
query := r'(.)(\A\w+)(.)'
mut re := regex.regex_opt(query) or { panic(err) }
result := re.replace_by_fn(txt, my_repl)
println(result)
}
Output:
today *[*John*]* is gone to his house with *(*Jack*)* and *[*Marie*]*.
Debugging
This module has few small utilities to you write regex patterns.
Syntax errors highlight
The next example code shows how to visualize regex pattern syntax errors in the compilation phase:
query := r'ciao da ab[ab-]'
// there is an error, a range not closed!!
mut re := new()
re.compile_opt(query) or { println(err) }
// output!!
// query: ciao da ab[ab-]
// err : ----------^
// ERROR: ERR_SYNTAX_ERROR
Compiled code
It is possible to view the compiled code calling the function get_query()
. The result will be something like this:
========================================
v RegEx compiler v 1.0 alpha output:
PC: 0 ist: 92000000 ( GROUP_START #:0 { 1, 1}
PC: 1 ist: 98000000 . DOT_CHAR nx chk: 4 { 1, 1}
PC: 2 ist: 94000000 ) GROUP_END #:0 { 1, 1}
PC: 3 ist: 92000000 ( GROUP_START #:1 { 1, 1}
PC: 4 ist: 90000000 [\A] BSLS { 1, 1}
PC: 5 ist: 90000000 [\w] BSLS { 1,MAX}
PC: 6 ist: 94000000 ) GROUP_END #:1 { 1, 1}
PC: 7 ist: 92000000 ( GROUP_START #:2 { 1, 1}
PC: 8 ist: 98000000 . DOT_CHAR nx chk: -1 last! { 1, 1}
PC: 9 ist: 94000000 ) GROUP_END #:2 { 1, 1}
PC: 10 ist: 88000000 PROG_END { 0, 0}
========================================
PC
:int
is the program counter or step of execution, each single step is a token.
ist
:hex
is the token instruction id.
[a]
is the char used by the token.
query_ch
is the type of token.
{m,n}
is the quantifier, the greedy off flag ?
will be showed if present in the token
Log debug
The log debugger allow to print the status of the regex parser when the parser is running. It is possible to have two different levels of debug information: 1 is normal, while 2 is verbose.
Here is an example:
normal - list only the token instruction with their values
// re.flag = 1 // log level normal
flags: 00000000
# ## ## ## #
verbose - list all the instructions and states of the parser
flags: 00000000
# ## ## ## ## ## ## ## ## ## ## ## #
the columns have the following meaning:
# 2
number of actual steps from the start of parsing
s: ist_next
state of the present step
PC: 1
program counter of the step
=>7fffffff
hex code of the instruction
i,ch,len:[ 0,'a',1]
i
index in the source string, ch
the char parsed, len
the length in byte of the char parsed
f.m:[ 0, 1]
f
index of the first match in the source string, m
index that is actual matching
query_ch: [b]
token in use and its char
{2,3}:1?
quantifier {min,max}
, :1
is the actual counter of repetition, ?
is the greedy off flag if present.
Custom Logger output
The debug functions output uses the stdout
as default, it is possible to provide an alternative output, by setting a custom output function:
// custom print function, the input will be the regex debug string
fn custom_print(txt string) {
println('my log: ${txt}')
}
mut re := new()
re.log_func = custom_print
// every debug output from now will call this function
Example code
Here an example that perform some basically match of strings
import regex
fn main() {
txt := 'http://www.ciao.mondo/hello/pippo12_/pera.html'
query := r'(?P<format>https?)|(?P<format>ftps?)://(?P<token>[\w_]+.)+'
mut re := regex.regex_opt(query) or { panic(err) }
start, end := re.match_string(txt)
if start >= 0 {
println('Match (${start}, ${end}) => [${txt[start..end]}]')
for g_index := 0; g_index < re.group_count; g_index++ {
println('#${g_index} [${re.get_group_by_id(txt, g_index)}] \
}] bounds: ${re.get_group_bounds_by_id(g_index)}')
}
for name in re.group_map.keys() {
println('group:'${name}' \t=> [${re.get_group_by_name(txt, name)}] \
}] bounds: ${re.get_group_bounds_by_name(name)}')
}
} else {
println('No Match')
}
}
More examples are available in the test code for the regex
module, see vlib/regex/regex_test.v
.
Constants #
const v_regex_version = '1.0 alpha' // regex module version
const max_code_len = 256 // default small base code len for the regex programs
const max_quantifier = 1073741824 // default max repetitions allowed for the quantifiers = 2^30
const spaces = [` `, `\t`, `\n`, `\r`, `\v`, `\f`]
spaces chars (here only westerns!!) TODO: manage all the spaces from unicode
const new_line_list = [`\n`, `\r`]
new line chars for now only '\n'
const no_match_found = -1
Results
const compile_ok = 0 // the regex string compiled, all ok
Errors
const err_char_unknown = -2 // the char used is unknow to the system
const err_undefined = -3 // the compiler symbol is undefined
const err_internal_error = -4 // Bug in the regex system!!
const err_cc_alloc_overflow = -5 // memory for char class full!!
const err_syntax_error = -6 // syntax error in regex compiling
const err_groups_overflow = -7 // max number of groups reached
const err_groups_max_nested = -8 // max number of nested group reached
const err_group_not_balanced = -9 // group not balanced
const err_group_qm_notation = -10 // group invalid notation
const err_invalid_or_with_cc = -11 // invalid or on two consecutive char class
const err_neg_group_quantifier = -12 // negation groups can not have quantifier
const err_consecutive_dots = -13
const f_nl = 0x00000001 // end the match when find a new line symbol
const f_ms = 0x00000002 // match true only if the match is at the start of the string
const f_me = 0x00000004 // match true only if the match is at the end of the string
const f_efm = 0x00000100 // exit on first token matched, used by search
const f_bin = 0x00000200 // work only on bytes, ignore utf-8
const f_src = 0x00020000
behaviour modifier flags
fn new #
fn new() RE
new create a RE of small size, usually sufficient for ordinary use
fn regex_base #
fn regex_base(pattern string) (RE, int, int)
regex_base returns a regex object (RE
) generated from pattern
string and detailed information in re_err, err_pos, if an error occurred.
fn regex_opt #
fn regex_opt(pattern string) !RE
regex_opt create new RE object from RE pattern string
type FnLog #
type FnLog = fn (string)
Log function prototype
type FnReplace #
type FnReplace = fn (re RE, in_txt string, start int, end int) string
type of function used for custom replace in_txt source text start index of the start of the match in in_txt end index of the end of the match in in_txt the match is in in_txt[start..end]
type FnValidator #
type FnValidator = fn (u8) bool
struct RE #
struct RE {
pub mut:
prog []Token
prog_len int // regex program len
// char classes storage
cc []CharClass // char class list
cc_index int // index
// groups
group_count int // number of groups in this regex struct
groups []int // groups index results
group_max_nested int = 3 // max nested group
group_max int = 8 // max allowed number of different groups
state_list []StateObj
group_csave_flag bool // flag to enable continuous saving
group_csave []int //= []int{} // groups continuous save list
group_map map[string]int // groups names map
group_stack []int
group_data []int
// flags
flag int // flag for optional parameters
// Debug/log
debug int // enable in order to have the unroll of the code 0 = NO_DEBUG, 1 = LIGHT 2 = VERBOSE
log_func FnLog = simple_log // log function, can be customized by the user
query string // query string
}
fn (RE) compile_opt #
fn (mut re RE) compile_opt(pattern string) !
compile_opt compile RE pattern string
fn (RE) find #
fn (mut re RE) find(in_txt string) (int, int)
find try to find the first match in the input string
fn (RE) find_all #
fn (mut re RE) find_all(in_txt string) []int
find_all find all the non overlapping occurrences of the match pattern and return the start and end index of the match
Usage:
blurb := 'foobar boo steelbar toolbox foot tooooot'
mut re := regex.regex_opt('f|t[eo]+')?
res := re.find_all(blurb) // [0, 3, 12, 15, 20, 23, 28, 31, 33, 39]
fn (RE) find_all_str #
fn (mut re RE) find_all_str(in_txt string) []string
find_all_str find all the non overlapping occurrences of the match pattern, return a string list
fn (RE) find_from #
fn (mut re RE) find_from(in_txt string, start int) (int, int)
find try to find the first match in the input string strarting from start index
fn (RE) get_code #
fn (re &RE) get_code() string
get_code return the compiled code as regex string, note: may be different from the source!
fn (RE) get_group_bounds_by_id #
fn (re &RE) get_group_bounds_by_id(group_id int) (int, int)
get_group_by_id get a group boundaries by its id
fn (RE) get_group_bounds_by_name #
fn (re &RE) get_group_bounds_by_name(group_name string) (int, int)
get_group_bounds_by_name get a group boundaries by its name
fn (RE) get_group_by_id #
fn (re &RE) get_group_by_id(in_txt string, group_id int) string
get_group_by_id get a group string by its id
fn (RE) get_group_by_name #
fn (re &RE) get_group_by_name(in_txt string, group_name string) string
get_group_by_name get a group boundaries by its name
fn (RE) get_group_list #
fn (re &RE) get_group_list() []Re_group
get_group_list return a list of Re_group for the found groups
fn (RE) get_query #
fn (re &RE) get_query() string
get_query return a string with a reconstruction of the query starting from the regex program code
fn (RE) match_base #
fn (mut re RE) match_base(in_txt &u8, in_txt_len int) (int, int)
fn (RE) match_string #
fn (re &RE) match_string(in_txt string) (int, int)
match_string Match the pattern with the in_txt string
fn (RE) matches_string #
fn (re &RE) matches_string(in_txt string) bool
matches_string Checks if the pattern matches the in_txt string
fn (RE) replace #
fn (mut re RE) replace(in_txt string, repl_str string) string
replace return a string where the matches are replaced with the repl_str string, this function supports groups in the replace string
fn (RE) replace_by_fn #
fn (mut re RE) replace_by_fn(in_txt string, repl_fn FnReplace) string
replace_by_fn return a string where the matches are replaced with the string from the repl_fn callback function
fn (RE) replace_n #
fn (mut re RE) replace_n(in_txt string, repl_str string, count int) string
replace_n return a string where the firts count matches are replaced with the repl_str string, if count is > 0 the replace began from the start of the string toward the end if count is < 0 the replace began from the end of the string toward the start if count is 0 do nothing
fn (RE) replace_simple #
fn (mut re RE) replace_simple(in_txt string, repl string) string
replace_simple return a string where the matches are replaced with the replace string
fn (RE) reset #
fn (mut re RE) reset()
Reset RE object
fn (RE) split #
fn (mut re RE) split(in_txt string) []string
split returns the sections of string around the regex
Usage:
blurb := 'foobar boo steelbar toolbox foot tooooot'
mut re := regex.regex_opt('f|t[eo]+')?
res := re.split(blurb) // ['bar boo s', 'lbar ', 'lbox ', 't ', 't']
struct Re_group #
struct Re_group {
pub:
start int = -1
end int = -1
}
- README
- Constants
- fn new
- fn regex_base
- fn regex_opt
- type FnLog
- type FnReplace
- type FnValidator
- struct RE
- fn compile_opt
- fn find
- fn find_all
- fn find_all_str
- fn find_from
- fn get_code
- fn get_group_bounds_by_id
- fn get_group_bounds_by_name
- fn get_group_by_id
- fn get_group_by_name
- fn get_group_list
- fn get_query
- fn match_base
- fn match_string
- fn matches_string
- fn replace
- fn replace_by_fn
- fn replace_n
- fn replace_simple
- fn reset
- fn split
- struct Re_group