Skip to content

math #

Description

math provides commonly used mathematical functions for trigonometry, logarithms, etc.

Constants #

const epsilon = 2.2204460492503130808472633361816E-16
const e = 2.71828182845904523536028747135266249775724709369995957496696763
const pi = 3.14159265358979323846264338327950288419716939937510582097494459
const pi_2 = pi / 2.0
const pi_4 = pi / 4.0
const phi = 1.61803398874989484820458683436563811772030917980576286213544862
const tau = 6.28318530717958647692528676655900576839433879875021164194988918
const one_over_tau = 1.0 / tau
const one_over_pi = 1.0 / pi
const tau_over2 = tau / 2.0
const tau_over4 = tau / 4.0
const tau_over8 = tau / 8.0
const sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974
const sqrt_3 = 1.73205080756887729352744634150587236694280525381038062805580697
const sqrt_5 = 2.23606797749978969640917366873127623544061835961152572427089724
const sqrt_e = 1.64872127070012814684865078781416357165377610071014801157507931
const sqrt_pi = 1.77245385090551602729816748334114518279754945612238712821380779
const sqrt_tau = 2.50662827463100050241576528481104525300698674060993831662992357
const sqrt_phi = 1.27201964951406896425242246173749149171560804184009624861664038
const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
const log2_e = 1.0 / ln2
const ln10 = 2.30258509299404568401799145468436420760110148862877297603332790
const log10_e = 1.0 / ln10
const two_thirds = 0.66666666666666666666666666666666666666666666666666666666666667
const max_f32 = 3.40282346638528859811704183484516925440e+38 // 2**127 * (2**24 - 1) / 2**23

Floating-point limit values max is the largest finite value representable by the type. smallest_non_zero is the smallest positive, non-zero value representable by the type.

const smallest_non_zero_f32 = 1.401298464324817070923729583289916131280e-45 // 1 / 2**(127 - 1 + 23)
const max_f64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52
const smallest_non_zero_f64 = 4.940656458412465441765687928682213723651e-324
const min_i8 = i8(-128)
const max_i8 = i8(127)
const min_i16 = i16(-32768)
const max_i16 = i16(32767)
const min_i32 = i32(-2147483648)
const max_i32 = i32(2147483647)
const min_i64 = i64(-9223372036854775807 - 1)

-9223372036854775808 is wrong, because C compilers parse literal values without sign first, and 9223372036854775808 overflows i64, hence the consecutive subtraction by 1

const max_i64 = i64(9223372036854775807)
const min_u8 = u8(0)
const max_u8 = u8(255)
const min_u16 = u16(0)
const max_u16 = u16(65535)
const min_u32 = u32(0)
const max_u32 = u32(4294967295)
const min_u64 = u64(0)
const max_u64 = u64(18446744073709551615)

fn abs #

fn abs[T](a T) T

abs returns the absolute value of a

fn acos #

fn acos(x f64) f64

acos returns the arccosine, in radians, of x.

special case is: acos(x) = nan if x < -1 or x > 1

fn acosh #

fn acosh(x f64) f64

acosh returns the non-negative area hyperbolic cosine of x

fn alike #

fn alike(a f64, b f64) bool

alike checks if a and b are equal

fn angle_diff #

fn angle_diff(radian_a f64, radian_b f64) f64

angle_diff calculates the difference between angles in radians

fn aprox_cos #

fn aprox_cos(a f64) f64

aprox_cos returns an approximation of cos(a) made using lolremez

fn aprox_sin #

fn aprox_sin(a f64) f64

aprox_sin returns an approximation of sin(a) made using lolremez

fn asin #

fn asin(x_ f64) f64

asin returns the arcsine, in radians, of x.

special cases are: asin(±0) = ±0 asin(x) = nan if x < -1 or x > 1

fn asinh #

fn asinh(x f64) f64

asinh returns the area hyperbolic sine of x

fn atan #

fn atan(x f64) f64

atan returns the arctangent, in radians, of x.

special cases are: atan(±0) = ±0 atan(±inf) = ±pi/2.0

fn atan2 #

fn atan2(y f64, x f64) f64

atan2 returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value.

special cases are (in order): atan2(y, nan) = nan atan2(nan, x) = nan atan2(+0, x>=0) = +0 atan2(-0, x>=0) = -0 atan2(+0, x<=-0) = +pi atan2(-0, x<=-0) = -pi atan2(y>0, 0) = +pi/2.0 atan2(y<0, 0) = -pi/2.0 atan2(+inf, +inf) = +pi/4 atan2(-inf, +inf) = -pi/4 atan2(+inf, -inf) = 3pi/4 atan2(-inf, -inf) = -3pi/4 atan2(y, +inf) = 0 atan2(y>0, -inf) = +pi atan2(y<0, -inf) = -pi atan2(+inf, x) = +pi/2.0 atan2(-inf, x) = -pi/2.0

fn atanh #

fn atanh(x f64) f64

atanh returns the area hyperbolic tangent of x

fn cbrt #

fn cbrt(a f64) f64

cbrt returns the cube root of a.

special cases are: cbrt(±0) = ±0 cbrt(±inf) = ±inf cbrt(nan) = nan

fn ceil #

fn ceil(x f64) f64

ceil returns the least integer value greater than or equal to x.

special cases are: ceil(±0) = ±0 ceil(±inf) = ±inf ceil(nan) = nan

fn clamp #

fn clamp(x f64, a f64, b f64) f64

clamp returns x constrained between a and b

fn close #

fn close(a f64, b f64) bool

close checks if a and b are within 1e-14 of each other

fn copysign #

fn copysign(x f64, y f64) f64

copysign returns a value with the magnitude of x and the sign of y

fn cos #

fn cos(a f64) f64

cos calculates cosine in radians (float64)

fn cosf #

fn cosf(a f32) f32

cosf calculates cosine in radians (float32)

fn cosh #

fn cosh(x f64) f64

cosh returns the hyperbolic cosine of x in radians

special cases are: cosh(±0) = 1 cosh(±inf) = +inf cosh(nan) = nan

fn cot #

fn cot(a f64) f64

tan calculates cotangent of a number

fn count_digits #

fn count_digits(number i64) int

count_digits return the number of digits in the number passed. Number argument accepts any integer type (i8|i16|int|isize|i64) and will be cast to i64

fn cube #

fn cube[T](x T) T

cube returns the cube of the argument x, i.e. x * x * x

fn degrees #

fn degrees(radians f64) f64

degrees converts an angle in radians to a corresponding angle in degrees.

fn digits #

fn digits(num i64, params DigitParams) []int

You can also use it, with an explicit reverse: true parameter, (it will do a reverse of the result array internally => slower):

Examples

assert math.digits(12345, base: 10) == [5,4,3,2,1]
assert math.digits(12345, reverse: true) == [1,2,3,4,5]

fn divide_euclid #

fn divide_euclid[T](numer T, denom T) DivResult[T]

divide_euclid returns the Euclidean version of the result of dividing numer to denom

fn divide_floored #

fn divide_floored[T](numer T, denom T) DivResult[T]

divide_floored returns the floored version of the result of dividing numer to denom

fn divide_truncated #

fn divide_truncated[T](numer T, denom T) DivResult[T]

divide_truncated returns the truncated version of the result of dividing numer to denom

fn egcd #

fn egcd(a i64, b i64) (i64, i64, i64)

egcd returns (gcd(a, b), x, y) such that |ax + by| = gcd(a, b)

fn erf #

fn erf(a f64) f64

erf returns the error function of x.

special cases are: erf(+inf) = 1 erf(-inf) = -1 erf(nan) = nan

fn erfc #

fn erfc(a f64) f64

erfc returns the complementary error function of x.

special cases are: erfc(+inf) = 0 erfc(-inf) = 2 erfc(nan) = nan

fn exp #

fn exp(x f64) f64

exp returns e**x, the base-e exponential of x.

fn exp2 #

fn exp2(x f64) f64

exp2 returns 2**x, the base-2 exponential of x.

fn expm1 #

fn expm1(x f64) f64

expm1 calculates e**x - 1 special cases are: expm1(+inf) = +inf expm1(-inf) = -1 expm1(nan) = nan

fn f32_bits #

fn f32_bits(f f32) u32

f32_bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position. f32_bits(f32_from_bits(x)) == x.

fn f32_from_bits #

fn f32_from_bits(b u32) f32

f32_from_bits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. f32_from_bits(f32_bits(x)) == x.

fn f64_bits #

fn f64_bits(f f64) u64

f64_bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position, and f64_bits(f64_from_bits(x)) == x.

fn f64_from_bits #

fn f64_from_bits(b u64) f64

f64_from_bits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. f64_from_bits(f64_bits(x)) == x.

fn factorial #

fn factorial(n f64) f64

factorial calculates the factorial of the provided value.

fn factoriali #

fn factoriali(n int) i64

factoriali returns 1 for n <= 0 and -1 if the result is too large for a 64 bit integer

fn floor #

fn floor(x f64) f64

floor returns the greatest integer value less than or equal to x.

special cases are: floor(±0) = ±0 floor(±inf) = ±inf floor(nan) = nan

fn floorf #

fn floorf(x f32) f32

floorf returns the greatest integer value less than or equal to x.

special cases are: floor(±0) = ±0 floor(±inf) = ±inf floor(nan) = nan

fn fmod #

fn fmod(x f64, y f64) f64

fmod returns the floating-point remainder of number / denom (rounded towards zero)

fn frexp #

fn frexp(x f64) (f64, int)

frexp breaks f into a normalized fraction and an integral power of two. It returns frac and exp satisfying f == frac × 2**exp, with the absolute value of frac in the interval [½, 1).

special cases are: frexp(±0) = ±0, 0 frexp(±inf) = ±inf, 0 frexp(nan) = nan, 0 pub fn frexp(f f64) (f64, int) { mut y := f64_bits(x) ee := int((y >> 52) & 0x7ff) // special cases if ee == 0 { if x != 0.0 { x1p64 := f64_from_bits(0x43f0000000000000) z,e_ := frexp(x * x1p64) return z,e_ - 64 } return x,0 } else if ee == 0x7ff { return x,0 } e_ := ee - 0x3fe y &= 0x800fffffffffffff y |= 0x3fe0000000000000 return f64_from_bits(y),e_

fn gamma #

fn gamma(a f64) f64

gamma returns the gamma function of x.

special ifs are: gamma(+inf) = +inf gamma(+0) = +inf gamma(-0) = -inf gamma(x) = nan for integer x < 0 gamma(-inf) = nan gamma(nan) = nan

fn gcd #

fn gcd(a_ i64, b_ i64) i64

gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).

fn get_high_word #

fn get_high_word(f f64) u32

get_high_word returns high part of the word of f.

fn hypot #

fn hypot(x f64, y f64) f64

hypot returns the hypotenuse of the triangle give two sides

fn ilog_b #

fn ilog_b(x f64) int

ilog_b returns the binary exponent of x as an integer.

special cases are: ilog_b(±inf) = max_i32 ilog_b(0) = min_i32 ilog_b(nan) = max_i32

fn inf #

fn inf(sign int) f64

inf returns positive infinity if sign >= 0, negative infinity if sign < 0.

fn is_finite #

fn is_finite(f f64) bool

is_finite returns true if f is finite

fn is_inf #

fn is_inf(f f64, sign int) bool

is_inf reports whether f is an infinity, according to sign. If sign > 0, is_inf reports whether f is positive infinity. If sign < 0, is_inf reports whether f is negative infinity. If sign == 0, is_inf reports whether f is either infinity.

fn is_nan #

fn is_nan(f f64) bool

is_nan reports whether f is an IEEE 754 ``not-a-number'' value.

fn lcm #

fn lcm(a i64, b i64) i64

lcm calculates least common (non-negative) multiple.

fn ldexp #

fn ldexp(frac f64, exp int) f64

ldexp calculates frac*(2**exp).

fn log #

fn log(a f64) f64

log returns the natural logarithm of x (float64)

fn log10 #

fn log10(x f64) f64

log10 returns the decimal logarithm of x. The special cases are the same as for log.

fn log1p #

fn log1p(x f64) f64

log1p returns log(1+x)

fn log2 #

fn log2(x f64) f64

log2 returns the binary logarithm of x. The special cases are the same as for log.

fn log_b #

fn log_b(x f64) f64

log_b returns the binary exponent of x.

special cases are: log_b(±inf) = +inf log_b(0) = -inf log_b(nan) = nan

fn log_factorial #

fn log_factorial(n f64) f64

log_factorial calculates the log-factorial of the provided value.

fn log_gamma #

fn log_gamma(x f64) f64

log_gamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).

special ifs are: log_gamma(+inf) = +inf log_gamma(0) = +inf log_gamma(-integer) = +inf log_gamma(-inf) = -inf log_gamma(nan) = nan

fn log_gamma_sign #

fn log_gamma_sign(a f64) (f64, int)

log_gamma_sign returns the natural logarithm and sign (-1 or +1) of Gamma(x)

fn log_n #

fn log_n(x f64, b f64) f64

log_n returns log base b of x

fn logf #

fn logf(a f32) f32

log returns the natural logarithm of x (float32)

fn max #

fn max[T](a T, b T) T

max returns the maximum of a and b

fn maxof #

fn maxof[T]() T

maxof returns the maximum value of the type T

fn min #

fn min[T](a T, b T) T

min returns the minimum of a and b

fn minmax #

fn minmax(a f64, b f64) (f64, f64)

minmax returns the minimum and maximum value of the two provided.

fn minof #

fn minof[T]() T

minof returns the minimum value of the type T

fn mod #

fn mod(x f64, y f64) f64

Floating-point mod function. mod returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x.

special cases are: mod(±inf, y) = nan mod(nan, y) = nan mod(x, 0) = nan mod(x, ±inf) = x mod(x, nan) = nan

fn modf #

fn modf(f f64) (f64, f64)

modf returns integer and fractional floating-point numbers that sum to f. Both values have the same sign as f.

special cases are: modf(±inf) = ±inf, nan modf(nan) = nan, nan

fn modulo_euclid #

fn modulo_euclid[T](numer T, denom T) T

modulo_euclid returns the Euclidean remainder of dividing numer to denom

fn modulo_floored #

fn modulo_floored[T](numer T, denom T) T

modulo_floored returns the floored remainder of dividing numer to denom

fn modulo_truncated #

fn modulo_truncated[T](numer T, denom T) T

modulo_truncated returns the truncated remainder of dividing numer to denom

fn nan #

fn nan() f64

nan returns an IEEE 754 ``not-a-number'' value.

fn nextafter #

fn nextafter(x f64, y f64) f64

nextafter returns the next representable f64 value after x towards y.

special cases are: nextafter(x, x) = x nextafter(nan, y) = nan nextafter(x, nan) = nan

fn nextafter32 #

fn nextafter32(x f32, y f32) f32

nextafter32 returns the next representable f32 value after x towards y.

special cases are: nextafter32(x, x) = x nextafter32(nan, y) = nan nextafter32(x, nan) = nan

fn normalize #

fn normalize(x f64) (f64, int)

normalize returns a normal number y and exponent exp satisfying x == y × 2**exp. It assumes x is finite and non-zero.

fn pow #

fn pow(x f64, y f64) f64

pow returns the base x, raised to the provided power y. (float64)

fn pow10 #

fn pow10(n int) f64

pow10 returns 10**n, the base-10 exponential of n.

special cases are: pow10(n) = 0 for n < -323 pow10(n) = +inf for n > 308

fn powf #

fn powf(a f32, b f32) f32

powf returns the base a, raised to the provided power b. (float32)

fn powi #

fn powi(a i64, b i64) i64

powi returns base raised to power (a**b) as an integer (i64)

special case: powi(a, b) = -1 for a = 0 and b < 0

fn q_rsqrt #

fn q_rsqrt(x f64) f64

fn radians #

fn radians(degrees f64) f64

radians converts an angle in degrees to a corresponding angle in radians.

fn round #

fn round(x f64) f64

round returns the nearest integer, rounding half away from zero.

special cases are: round(±0) = ±0 round(±inf) = ±inf round(nan) = nan

fn round_sig #

fn round_sig(x f64, sig_digits int) f64

Returns the rounded float, with sig_digits of precision. i.e assert round_sig(4.3239437319748394,6) == 4.323944

fn round_to_even #

fn round_to_even(x f64) f64

round_to_even returns the nearest integer, rounding ties to even.

special cases are: round_to_even(±0) = ±0 round_to_even(±inf) = ±inf round_to_even(nan) = nan

fn scalbn #

fn scalbn(x f64, n_ int) f64

scalbn scales x by FLT_RADIX raised to the power of n, returning the same as: scalbn(x,n) = x * FLT_RADIX ** n

fn sign #

fn sign(n f64) f64

sign returns the corresponding sign -1.0, 1.0 of the provided number. if n is not a number, its sign is nan too.

fn signbit #

fn signbit(x f64) bool

signbit returns a value with the boolean representation of the sign for x

fn signi #

fn signi(n f64) int

signi returns the corresponding sign -1, 1 of the provided number.

fn sin #

fn sin(a f64) f64

sin calculates sine in radians (float64)

fn sincos #

fn sincos(x f64) (f64, f64)

sincos calculates the sine and cosine of the angle in radians

fn sinf #

fn sinf(a f32) f32

sinf calculates sine in radians (float32)

fn sinh #

fn sinh(x_ f64) f64

sinh calculates hyperbolic sine.

fn sqrt #

fn sqrt(a f64) f64

sqrt calculates square-root of the provided value. (float64)

fn sqrtf #

fn sqrtf(a f32) f32

sqrtf calculates square-root of the provided value. (float32)

fn sqrti #

fn sqrti(a i64) i64

sqrti calculates the integer square-root of the provided value. (i64)

fn square #

fn square[T](x T) T

square returns the square of the argument x, i.e. x * x

fn tan #

fn tan(a f64) f64

tan calculates tangent of a number

fn tanf #

fn tanf(a f32) f32

tanf calculates tangent. (float32)

fn tanh #

fn tanh(x f64) f64

tanh returns the hyperbolic tangent of x.

special cases are: tanh(±0) = ±0 tanh(±inf) = ±1 tanh(nan) = nan

fn tolerance #

fn tolerance(a f64, b f64, tol f64) bool

tolerance checks if a and b difference are less than or equal to the tolerance value

fn trunc #

fn trunc(x f64) f64

trunc returns the integer value of x.

special cases are: trunc(±0) = ±0 trunc(±inf) = ±inf trunc(nan) = nan

fn veryclose #

fn veryclose(a f64, b f64) bool

veryclose checks if a and b are within 4e-16 of each other

fn with_set_high_word #

fn with_set_high_word(f f64, hi u32) f64

with_set_high_word sets high word of f to lo

fn with_set_low_word #

fn with_set_low_word(f f64, lo u32) f64

with_set_low_word sets low word of f to lo

struct DigitParams #

@[params]
struct DigitParams {
pub:
	base    int = 10
	reverse bool
}

struct DivResult #

struct DivResult[T] {
pub mut:
	quot T
	rem  T
}

DivResult[T] represents the result of an integer division (both quotient and remainder) See also https://en.wikipedia.org/wiki/Modulo